Retinoblastoma deficiency increases chemosensitivity in lung cancer.
نویسندگان
چکیده
The retinoblastoma (RB) tumor suppressor is mutated or functionally inactivated in the majority of human malignancies, and p16(INK4a)-cyclin D1-cyclin-dependent kinase 4-RB pathway aberrations are present in nearly all cases of non-small cell lung cancer (NSCLC). Here, the distinct role of RB loss in tumorigenic proliferation and sensitivity to chemotherapeutics was determined in NSCLC cells. Attenuation of RB led to a proliferative advantage in vitro and aggressive tumorigenic growth in xenograft models. Clinically, such aggressive disease is treated with genotoxic and cytotoxic chemotherapeutic agents. In vitro analysis showed that RB deficiency resulted in bypass of the checkpoint response to multiple chemotherapeutic challenges concomitant with an elevated apoptotic response. Correspondingly, RB deficiency in xenograft models led to increased chemosensitivity. However, this response was transient, and a durable response was dependent on prolonged chemotherapeutic administration. Together, these findings show that although RB deficiency enhances sensitivity to chemotherapeutic challenge, efficient and sustainable response is highly dependent on the specific therapeutic regimen, in addition to the molecular environment.
منابع مشابه
Wild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line
The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...
متن کاملHypoxia-Inducible Factor 1α Determines Gastric Cancer Chemosensitivity via Modulation of p53 and NF-κB
BACKGROUND Reduced chemosensitivity of solid cancer cells represents a pivotal obstacle in clinical oncology. Hence, the molecular characterization of pathways regulating chemosensitivity is a central prerequisite to improve cancer therapy. The hypoxia-inducible factor HIF-1alpha has been linked to chemosensitivity while the underlying molecular mechanisms remain largely elusive. Therefore, we ...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملKnockdown of CABYR-a/b increases chemosensitivity of human non-small cell lung cancer cells through inactivation of Akt.
UNLABELLED CABYR is a calcium-binding tyrosine phosphorylation-regulated protein that was identified as a novel cancer testis antigen in lung cancer in our previous study. However, the role of CABYR as a driver of disease progression or as a chemosensitizer is poorly understood. This study sought to investigate the relationship between the expression levels of CABYR-a/b, which are the two predo...
متن کاملKnockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells
Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Incr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 17 شماره
صفحات -
تاریخ انتشار 2007